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The third edition of Atlas of Ultrasound-Guided Regional Anesthesia marks a change in format. There 
are now many new chapters by contributing authors that vastly improve and expand the section of 
topics from what would be possible with a single-author text. A wide variety of newly described techniques 
are presented in this edition, and chapters from the previous editions underwent extensive editing and 
updating. The new chapters are mostly dedicated to blocks in the trunk and head and neck regions. 
The emphasis on safety continues, with a detailed contributed chapter that reviews large studies of rare 
events. Also included is a chapter on limited resources that discusses techniques and alternatives in 
different clinical settings.

We have tried to present clear and concise summaries of suggested techniques so that readers will 
have the confidence and background they need to begin using the interventional procedures. Wide 
fields of view, long axis views, three-dimensional imaging, and step-by-step instruction are all used to 
improve the educational format and illustrate anatomic structures that lie near or outside the conventional 
two-dimensional field of imaging. Where appropriate, chapters have additional sonograms that illustrate 
variations of normal anatomy that one may encounter in clinical practice. New videos show the dynamics 
of interventional acute pain medicine in stunning detail. All the chapters highlight recent advances and 
techniques in the rapidly changing field of ultrasound-guided regional anesthesia.

Very special thanks to Allegra Greher (artwork), Tin-na Kan (sciatic nerve blocks), David Mai 
(catheters), Ed Mathews (information technology), Stefan Simon (intercostal nerve blocks), Robin 
Stackhouse and Susan Yoo (figures and media production), and Ranier Litz and Tim Maecken (organizing 
the USRA Symposia at which much of this educational material was presented and discussed). We are 
grateful to the anesthesiologists, CRNAs, anesthesia technicians, and perioperative nurses at Kaiser 
Permanente hospitals in Oakland, Richmond, and San Francisco, California for their help with the 
catheter sonograms and video clips.

Andrew T. Gray, MD, PhD

Preface
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Ultrasound
CHAPTER 

1 

Ultrasound waves are high-frequency sound waves generated in specific frequency ranges and 
sent through tissues.1 How sound waves penetrate a tissue depends on the range of the frequency 
produced. Lower frequencies penetrate deeper than high frequencies do. The frequencies for 
clinical imaging (1 to 70 MHz) are well above the upper limit of normal human hearing (15 to 
20 KHz). Wave motion transports energy and momentum from one point in space to another 
without transport of matter. In mechanical waves (e.g., water waves, waves on a string, and sound 
waves), energy and momentum are transported by means of disturbance in the medium because 
the medium has elastic properties. Any wave in which the disturbance is parallel to the direction 
of propagation is referred to as a longitudinal wave. Sound waves are longitudinal waves of 
compression and rarefaction of a medium such as air or soft tissue. Compression refers to high-
pressure zones, and rarefaction refers to low-pressure zones (these zones alternate in position).

As the sound passes through tissues, it is absorbed, reflected, or allowed to pass through, 
depending on the echodensity of the tissue. Substances with high water content (e.g., blood, 
cerebrospinal fluid) conduct sound very well and reflect very poorly and thus are termed echolucent. 
Because they reflect very little of the sound, they appear as dark areas (hypoechoic). Substances 
low in water content or high in materials that are poor sound conductors (e.g., air, bone) reflect 
almost all the sound and appear very bright (hyperechoic). Substances with sound conduction 
properties between these extremes appear darker to lighter, depending on the amount of wave 
energy they reflect.

Audible sounds spread out in all directions, whereas ultrasound beams are well collimated. 
The frequency of sound does not change with propagation unless the wave strikes a moving 
object, in which case the changes are small. The product of the frequency and wavelength of 
sound waves is the wave speed. Because the speed of sound in soft tissue is nearly constant, 
higher-frequency sound waves have shorter wavelengths. Two adjacent structures cannot be 
identified as separate entities on an ultrasound scan if they are less than one wavelength apart. 
Therefore sound wave frequency is one of the main determinants of spatial resolution of  
ultrasound scans.

Reference

1. Aldrich JE. Basic physics of ultrasound imaging. Crit Care Med. 2007;35:S131–S137.

See Video 1.1 on ExpertConsult.com.

http://expertconsult.com/
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CHAPTER 

2 Speed of Sound

The speed of sound is determined by properties of the medium in which it propagates. The sound 
velocity equals ( )B rho , where B equals the bulk modulus and rho equals density. The bulk 
modulus is proportional to stiffness. Thus stiffness (change in shape) and wave speed are related. 
Density (weight per unit volume) and wave speed are inversely related. The speed of sound in a 
given medium is essentially independent of frequency.

Because the velocity of sound in soft tissue is 1540 m/s, 13 microseconds elapse for each 
centimeter of tissue the sound wave must travel (the back-and-forth time of flight). Speed-of-sound 
artifacts relate to both time-of-flight considerations and refraction that occurs at the interface of 
tissues with different speeds of sound.1-3

References

1. Scanlan KA. Sonographic artifacts and their origins. AJR Am J Roentgenol. 1991;156:1267–1272.
2. Fornage BD. Sonographically guided core-needle biopsy of breast masses: the “bayonet artifact”. AJR Am J Roentgenol. 

1995;164:1022–1023.
3. Gray AT, Schafhalter-Zoppoth I. “Bayonet artifact” during ultrasound-guided transarterial axillary block. Anesthesiology. 

2005;102:1291–1292.

See Video 1.1 on ExpertConsult.com.

http://expertconsult.com/
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Bayonet artifact

Bayonet artifact
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FIGURE 2.1 Bayonet artifacts during popliteal block (A and B). Because the speed of sound 
is not necessarily homogeneous in soft tissue, the needle can sometimes appear 
to bend, similar to a bayonet. Actual mechanical bending of the needle typically 
appears as gentle bowing of the needle (C). 
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CHAPTER 

3 Attenuation

Attenuation is a decrease in wave amplitude as it travels through a medium. The attenuation of 
ultrasound in soft tissue is approximately 0.5 to 0.75 dB/(MHz-cm), indicating that the extent of 
attenuation depends on the distance traveled and the frequency of insonation. The units of the 
attenuation coefficient directly show the greater attenuation of high-frequency ultrasound beams. 
In soft tissue, 80% or more of the total attenuation is caused by absorption of the ultrasound 
wave, thereby generating heat.

Time gain compensation (TGC) adjusts for attenuation of an ultrasound beam as a function 
of depth. When TGC is properly adjusted, images of similar reflectors appear the same regardless 
of depth.

An acoustic shadow is said to exist when a localized object reflects or attenuates sound to 
impede transmission. Bone is a strong absorber of ultrasound waves. Therefore shadowing occurs 
deep to bony structures (“bone shadow”).

When a nonattenuating fluid (e.g., blood or injected local anesthetic) lies within an attenuating 
sound field (e.g., soft tissue), enhancement of echoes deep to the fluid occurs. This phenomenon, 
originally described as posterior acoustic enhancement (also called increased through-transmission), 
is due to lack of absorption of the sound waves by the fluid.1 This attenuation artifact is a potential 
source of problems, especially during regional blocks where nerves are situated close to blood 
vessels.

Clinical Pearls

• In general, the highest frequency capable of adequate penetration to the depth of interest 
should be used for imaging.

• Decibels (dB) are a relative logarithmic measure of sound wave intensity.

Reference

1. Filly RA, Sommer FG, Minton MJ. Characterization of biological fluids by ultrasound and computed tomography. 
Radiology. 1980;134:167–171.

See Video 1.1 on ExpertConsult.com.

http://expertconsult.com/
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Ulna

FIGURE 3.1 Acoustic shadowing by bone. In this sonogram from the forearm, the acoustic 
shadowing by the ulna is evident. The bright cortical line of the surface of the 
bone is followed by extinction of the sound wave below. 
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CHAPTER 

4 Reflection

Ultrasonography measures the amplitude of the return echo as a function of time.1 Sound waves 
are reflected at the interface of tissues with different acoustic impedances. The acoustic impedance 
(kg/[m2-s]) is the product of the density (kg/m3) and velocity (m/sec). The extent of reflection is 
governed by the reflection coefficient: R = (Z1 − Z2)/(Z1 + Z2). If Z1 = Z2, there is no reflected 
wave.2 Ultrasound characteristics of biologic tissue and interventional materials are summarized 
in Table 4.1.

Reflections off a smooth surface are called specular. If two specular reflectors are close to each 
other, reverberation within the sound field can result, displayed as parallel, equally spaced lines 
deep to the reflectors. Csomet-tail artifact, which is a form of reverberation artifact, is caused by 
multiple internal reflections from a small, highly reflective interface.3,4

Clinical Pearls

• The normal pleural line is thin and smooth, which generates a few comet-tail artifacts (between 
one and three artifacts per intercostal space scan). In the presence of parenchymal lung 
disease, the pleural line is irregular and thickened, generating many more comet-tail artifacts.5

• No comet-tail artifact is observed from the lung when pneumothorax is present.
• Hyperechoic reverberation artifacts are seen with metallic foreign bodies such as block needles.

TABLE 4.1
 Ultrasound Characteristics of Biologic Tissue and Interventional 

Materials

Substance Velocity (m/s)
Attenuation (dB/
[MHz-cm])

Impedance 
(mrayls × 10–6)

Air 330 7.5 0.0001

Water 1480 0.0022 1.5

Soft tissue 1540 0.75 1.7

Blood 1575 0.15 1.6

Bone 4080 15 8

Stainless steel 5790 0.2 47

Data from Ziskin MC. Fundamental physics of ultrasound and its propagation in tissue. Radiographics. 1993;13:705–
709; Ziskin MC, Thickman DI, Goldenberg NJ, Lapayowker MS, Becker JM. The comet tail artifact. J Ultrasound 
Med. 1982;1:1–7; Gawdzinska K. Investigation into the propagation of acoustic waves in metal. Metalurgija. 
2005;44:125–128; Smith SW, Booi RC, Light ED, Merdes CL, Wolf PD. Guidance of cardiac pacemaker leads using 
real time 3D ultrasound: feasibility studies. Ultrason Imaging. 2002;24:119–128.

See Video 1.1 on ExpertConsult.com.

http://expertconsult.com/
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Reverberation artifact

FIGURE 4.1 Reverberation artifact from a block needle placed nearly parallel to the active 
face of the transducer. 

Comet-tail
artifact

FIGURE 4.2 Comet-tail artifact from the peritoneum during rectus sheath block. The peritoneum 
and pleura have similar appearances on ultrasound scans. 

References

1. Ziskin MC. Fundamental physics of ultrasound and its propagation in tissue. Radiographics. 1993;13:705–709.
2. Ziskin MC. Equation governing the transmission of ultrasound. J Clin Ultrasound. 1982;10:A21.
3. Ziskin MC, Thickman DI, Goldenberg NJ, Lapayowker MS, Becker JM. The comet tail artifact. J Ultrasound Med. 

1982;1:1–7.
4. Thickman DI, Ziskin MC, Goldenberg NJ, Linder BE. Clinical manifestations of the comet tail artifact. J Ultrasound 

Med. 1983;2:225–230.
5. Reissig A, Kroegel C. Transthoracic sonography of diffuse parenchymal lung disease: the role of comet tail artifacts. 

J Ultrasound Med. 2003;22:173–180.
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B

A

Air

FIGURE 4.3 A strong echo and acoustic shadowing are observed when air is inadvertently 
injected during musculocutaneous nerve block in the axilla. Sonograms before 
injection (A) and after injection (B) are shown. 
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Steroid
suspension

FIGURE 4.4 Acoustic properties of a steroid suspension. Although the local anesthetic injected 
for most regional blocks is anechoic, the particles of this steroid suspension are 
sufficiently large to produce a strong echo. 
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CHAPTER 

5 Beam Width (Slice Thickness)

Ultrasound systems assume all reflectors lie directly along the main axis of the ultrasound beam 
(i.e., the acoustic axis or central ray)1; however, ultrasound beams have a finite size. The out-of-plane 
beam width (slice thickness) can be measured with a diffuse scattering plane.2 The plane is oriented 
at a 45-degree angle so that the displayed echoes are equal to the out-of-plane echoes. Ultrasound 
beams can be focused to reduce the out-of-plane beam width and thereby improve image quality.

References

1. Goldstein A, Madrazo BL. Slice-thickness artifacts in gray-scale ultrasound. J Clin Ultrasound. 1981;9:365–375.
2. Goldstein A. Slice thickness measurements. J Ultrasound Med. 1988;7:487–498.

FIGURE 5.1 Out-of-plane slice thickness. Ultrasound scan of a diffuse scattering plane  
(a sheet of sandpaper). 

 See Video 1.1 on ExpertConsult.com.

http://expertconsult.com/
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FIGURE 5.2 The beam profile is shown as a function of the distance from the central ray. 
Because needle diameters are substantially less than those of the slice plane, a 
strong relationship between needle diameter and visibility is expected. 
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6 Anisotropy

Isotropic means equal in all directions. Anisotropic implies angle dependence. The latter term 
has been used to indicate the change in amplitude of received echoes from a structure when the 
angle of insonation is changed. Anisotropy is a discriminating feature between nerves and tendons. 
Tendons are more anisotropic than nerves are, meaning that smaller changes in angle (approximately 
2 degrees) alter the echoes from tendons than the changes in angle (approximately 10 degrees) 
that alter the echoes from nerves. The anisotropy of nerves also is important because during 
interventions it can be challenging to maintain nerve visibility while manipulating the transducer 
to image the block needle.1 With training, practitioners learn to naturally manipulate the transducer 
to fill in the received echoes from nerves. The amplitude of the received echoes from peripheral 
nerves is usually largest when the sound beam is perpendicular to the nerve path. Other structures, 
such as muscle, also exhibit anisotropy.2

 See Video 1.1 on ExpertConsult.com.

Clinical Pearls

• Anisotropy means that the backscatter echoes from a specimen depend on the directional 
orientation within the sound field.

• Anisotropy can be quantified by specifying the transducer frequency and the decibel change in 
backscatter echoes with perpendicular and parallel orientation of the specimen.

• Nerves, tendons, and muscle all exhibit anisotropy. Of these structures, tendon echoes are the 
most sensitive to transducer manipulation.

References

1. Soong J, Schafhalter-Zoppoth I, Gray AT. The importance of transducer angle to ultrasound visibility of the femoral 
nerve. Reg Anesth Pain Med. 2005;30:505.

2. Rubin JM, Carson PL, Meyer CR. Anisotropic ultrasonic backscatter from the renal cortex. Ultrasound Med Biol. 
1988;14:507–511.

http://expertconsult.com/
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Median nerve

A

B

FIGURE 6.1 Anisotropy of the median nerve (A and B). With inclination of the transducer 
(tilting), the received echoes from the median nerve disappear. 
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CHAPTER 

7 Spatial Compound Imaging

In conventional sonography, tissue is insonated from a single direction. Spatial compound imaging 
combines multiple lines of sight to form a single composite image at real-time frame rates. The 
ultrasound beam is steered by a different set of predetermined angles, typically within 20 degrees 
from the perpendicular.

One benefit of the use of spatial compound imaging is the reduction of angle-dependent 
artifacts (Table 7.1). Speckle is the granular appearance of a sonographic image that results from 
scattering of the ultrasound beam from small tissue reflectors. This speckle artifact results in the 
grainy appearance observed on sonograms, representing noise in the image. Improved image 
quality may be obtained by using spatial compound imaging, which can reduce speckle noise.

There is a central triangular region of overlap within the field of view where all angles mesh 
together for full compounding. The corners of the image receive only a subset of all the lines of 
sight; therefore not all the benefits of spatial compounding are manifest. Some machines allow 
the stray lines of sight (those off the rectangular field of view) to form a trapezoidal image format. 
This is sometimes useful to view the approaching needle with in-plane technique.

Spatial compound imaging was first designed to eliminate angle-dependent artifacts.1 This can 
be accomplished with a narrow range of beam angles. The larger the range of angles subtended 
by spatial compounding, the smaller the region within the field of imaging that will receive all 
the lines of sight (i.e., the region of full compounding).

Ultrasound imaging near bone may be improved by spatial compound imaging. This has 
relevance to imaging for some blocks (e.g., neuraxial, paravertebral, lumbar plexus, intercostals, 
sacroiliac joint). Although ultrasound waves cannot penetrate mature bone (even with low-frequency 
ultrasound), spatial compound imaging allows better definition of the bone surface.

Linear test tool images can be used to reveal the number of lines of sight used in spatial 
compound imaging. These images are generated with a smooth metal surface, such as that of a 
paper clip, solid metal stylet, or a US nickel. Metal is used because it is relatively nonattenuating, 

TABLE 7.1 Advantages and Disadvantages of Spatial Compound Imaging

Advantages Disadvantages
Reduction of angle-dependent artifacts (e.g., 
posterior acoustic enhancement and speckle)

Frame averaging (persistence or motion blur 
effect)

Needle tip imaging Limited range of angles (typically <20 
degrees)

Nerve border definition

Fascia contours

Imaging around bone

Wider field of view with stray lines of sight

 See Video 1.1 on ExpertConsult.com.

http://expertconsult.com/
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Clinical Pearls

• The use of spatial compound imaging can improve imaging of nerve borders and the block 
needle tip.

• One potential disadvantage of compound imaging is that needle reverberations occur over a 
broader range of angles and can prevent imaging of deeper structures.

• Compound imaging is being developed for both linear and curved arrays.
• Sliding the transducer along the known course of the nerve is a well-established technique to 

improve small nerve imaging. However, frame rate reduction that occurs with spatial compound 
imaging can cause problems with this technique.

• If compound imaging is not an advantage for a particular imaging situation, it can be turned off.

yet produces an echo. Smooth metal is used so that the test tool does not damage the transducer. 
For these measurements, high receiver gain and a single focal zone near the surface are used. As 
long as the test tool contact is less than the receiver aperture, the width of the displayed echoes 
will not change.

Reference

1. Baad M, Lu ZF, Reiser I, Paushter D. Clinical significance of US artifacts. Radiographics. 2017;37:1408–1423.
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A

B

FIGURE 7.1 Spatial compound imaging. Some forms of ultrasound imaging use multiple lines 
of sight by electronically steering the beam to different angles. This sonogram 
was obtained by placing a linear array test tool (the solid metal stylet of a 17-gauge 
epidural needle) over the active face of the transducer to isolate a single element 
(A and B). The displayed test tool image consists of the receiver apertures of the 
transducer. In this case, five lines of sight are used to form a compound image. 
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FIGURE 7.2 Conceptual illustration of transducer and associated scan lines for recording of 
three single-angle images. (Adapted from Jespersen SK, Wilhjelm JE, Sillesen 
H. In vitro spatial compound scanning for improved visualization of atherosclerosis. 
Ultrasound Med Biol. 2000;26:1357–1362.)
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CHAPTER 

8 Doppler Imaging

The Doppler shift is the change in frequency of sound when the sound wave strikes a moving 
object. This means the frequencies of the transmitted and reflected sound waves are not the same. 
Doppler shifts in clinical imaging are in the audible range (±10 KHz). Red blood cells are the 
primary reflectors that produce Doppler shifts. Ultrasound machines can color-encode the mean 
velocity (color Doppler), variance within the sample volume (variance Doppler), and power 
spectrum of the frequency shift (power Doppler).1

The optimal spectral Doppler angle is 30 to 60 degrees. Doppler angles greater than 60 degrees 
result in small Doppler shifts. Doppler angles less than 30 degrees result in loss of signal due to 
refraction.

Aliasing (incorrect or ambiguous estimation of the velocity) occurs when the velocity scale is 
set too small relative to the actual velocities. Wraparound transition between positive and negative 
velocity on spectral Doppler tracings indicates aliasing; therefore the peak velocities are off scale 
and not accurately estimated. This occurs because the pulse repetition frequency is insufficiently 
low relative to the frequency of the Doppler signal (a consequence of the sampling or Nyquist 
theorem).

Color Doppler is traditionally shown with the Nyquist velocity limits. Color aliasing is displayed 
as reversed flow within laminar flow areas, with no intervening black stripe between them. With 
true flow reversal, the transition has an intervening black stripe, indicating no flow estimation. 
This narrow colorless area occurs because of the absence of a Doppler shift where flow is per-
pendicular to the angle of insonation.

 See Video 1.1 on ExpertConsult.com.

References

1. Bude RO, Rubin JM. Power Doppler sonography. Radiology. 1996;200:21–23.
2. Rubin JM. Musculoskeletal power Doppler. Eur Radiol. 1999;9(suppl 3):S403–S406.

Clinical Pearls

• Blood has a low ultrasound attenuation coefficient. Red blood cells are the primary reflectors 
within blood.

• In power Doppler the gain threshold can be adjusted to the level at which there is no observed 
signal in bone.2

• In low-flow states (e.g., heart failure or atrial arrhythmias), aggregates of red blood cells can 
cause spontaneous echo contrast within blood vessels.

http://expertconsult.com/
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FIGURE 8.1 An example of color Doppler imaging during axillary block. A short-axis view of 
the neurovascular bundle is displayed. 

A

B

FIGURE 8.2 Long-axis view of the axillary artery and its profunda branch in conventional 
B-mode imaging (A) and with power Doppler (B). 
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CHAPTER 

9 Ultrasound Transducers

Ultrasound transducers consist of arrays of piezoelectric crystals that produce high-frequency 
sound waves in response to an electrical signal. These crystals interconvert electrical and mechanical 
energy, allowing for both transmission and reception of sound waves. The piezoelectric element 
vibrates to produce ultrasound. Piezoelectric crystals change shape under the influence of an 
electric field. The thickness of the crystal and the propagation speed within determine the frequency. 
With some transducers, the sonographer can select different crystals within the assembly to 
produce a different frequency.

The first ultrasound transducers were made using natural piezoelectric crystals (quartz, Rochelle 
salts, tourmaline). Modern transducers use synthetic crystals, such as PZT (lead zirconate titanate), 
that have high density, velocity, and acoustic impedance.1

Linear arrays typically produce a rectangular image format. The piezoelectric crystals are 
arranged in a straight line. Curvilinear arrays produce images in sector format (that do not 
originate from a single point). The range of angles with curved arrays (typically, 0 to 60 degrees) 
is much larger than with beam steering for spatial compound imaging (typically, 0 to 20 degrees).

Most regional blocks are performed with linear transducers because the high scan line density 
produces the resolution necessary for direct nerve imaging. Small curved probes are useful for 
infraclavicular and suprascapular nerve blocks because working room is limited. With curved 
probes, inaccurate estimation of needle tip location can occur despite complete line-up due to 
the different angles at which the ultrasound beam hits the needle.

FIGURE 9.1 Ultrasound transducers for regional blocks. The photograph includes (left to right) broad linear, small 
footprint linear, curved, sector, and hockey stick transducers. 

 See Video 1.1 on ExpertConsult.com.
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Transducer Manipulation
CHAPTER 

10 

Nomenclature for transducer manipulation has been previously established.1,2 Note that this 
nomenclature does not include specification of direction (e.g., rock back, rotate clockwise, tilt 
proximal). To control the transducer for interventions, the hands of the operator must be very 
close to the skin surface. The ulnar aspect of the transducer hand should rest on the skin of the 
patient.
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 See Video 1.1 on ExpertConsult.com.
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F

FIGURE 10.1 To optimally display anatomy for image presentation, the transducer must be 
manipulated. Transducer manipulation can be broken down into five basic 
movements: sliding (A), tilting (B), rocking (C and D), rotating (E and F), and 
compressing (G). Combining these movements allows for smooth scanning 
motion and anatomy visualization. (Adapted from AIUM technical bulletin. 
Transducer manipulation. American Institute of Ultrasound in Medicine. J Ultra-
sound Med. 1999;18:169–175.)
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Needle Imaging
CHAPTER 

11 

Needle tip visibility is critical to the success and safety of regional block interventions. It is 
imperative to identify the needle tip before advancing the needle. The cut on the bevel is the best 
identifier of the needle tip for a beveled needle. Partial line-ups (so that the needle tip is not 
within the plane of imaging but some of the needle shaft is) are a source of false reassurance with 
in-plane technique. A number of factors have been reported to influence needle tip visualization 
under clinical imaging conditions (Table 11.1).

INSERTION ANGLE (ANGLE OF INSONATION)

Needle tip imaging is optimal when the needle is parallel to the active face of the transducer. The 
cleanest needle echo is from a conventional needle at or near parallel. One study found a linear 
correlation between angle of incidence (measured from 0 to 75 degrees) and the mean needle tip 
brightness.1

NEEDLE GAUGE

There are multiple advantages to using a large needle for regional block. Needles as large as 
17 gauge have been used to improve needle tip visibility for regional blocks.2 Alignment of 
a large needle is faster with in-plane technique. An additional advantage of a large needle 
is the ability to redirect the needle within the scan plane. A large needle tip can be used to 
displace structures (e.g., arteries or nerves) before advancing. The disadvantages of the large 
needle are patient discomfort and the consequences of unintended puncture (e.g., of vessels, 
nerves), which are typically worse. In addition, the soft tissue properties (tent and recoil) 
are more noticeable with large needles. With finer needle tips, the hand motion and needle 
tip motion are more closely matched, and it is easier to place a fine needle tip within a thin  
fascial plane.

BEVEL ORIENTATION

Needle bevel orientation is important for needle tip visibility (Table 11.2).3 The bevel should be 
facing the transducer to enhance needle tip imaging.

See Video 1.1 on ExpertConsult.com.

TABLE 11.1 Factors Reported to Influence Needle Tip Visibility

Angle of insonation
Needle gauge
Bevel orientation
Receiver gain
Needle motion and test injections
Echogenic modifications
Spatial compound imaging

http://expertconsult.com/
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RECEIVER GAIN

The overall two-dimensional receiver gain should be reduced to improve visibility of the needle 
tip. However, a competing consideration is the visibility of other structures, such as the local 
anesthetic injection and blood vessels.

NEEDLE MOTION AND TEST INJECTIONS

Some clinicians move the needle slightly or use small-volume test injections of fluid (<1 mL) to 
improve the needle tip visibility.4 Because regional anesthesia interventions are performed near 
reactive structures, if needle motion is used, it should be small and slow (avoid rapid jabbing 
motions, which may cause puncture or paresthesia).

ECHOGENIC MODIFICATIONS

McGahan roughened up the surface of needles with a No. 11 surgical blade to improve the needle 
tip visibility.5 Historically, this was one of the first echogenic needle designs. When the angle of 
approach is more the 30 degrees, an echogenic needle is of benefit because the roughened surface 
sends echoes back to the transducer.6

SPATIAL COMPOUND IMAGING

With an increasing angle of incidence, the decrease in needle visibility is more pronounced for 
single-line ultrasound than for compound imaging. However, at angles of incidence of more than 
30 degrees, the needle was barely visible with either method of imaging.7

TABLE 11.2 Influence of Bevel Orientation on Needle Tip Visibility

Angle (Degrees) Poor Fair Good
0 0.14 0.45 0.41

90 0.33 0.51 0.17

180 0.14 0.45 0.41

270 0.25 0.52 0.23

From Hopkins RE, Bradley M. In-vitro visualization of biopsy needles with ultrasound: a comparative study of 
standard and echogenic needles using an ultrasound phantom. Clin Radiol. 2001;56:499–502.

Clinical Pearls

• Among specialized needles used for regional blocks, Hustead needle tips tend to have better 
ultrasound visibility.

• Side-port needles for regional block do not appear to exhibit isotropic diffraction, which has 
been reported to enhance the ultrasound visibility of similar needles.8

• Large-bore needles can be used as nerve retractors, pushing or pulling nerves out of the way 
of the advancing needle.

• Bevel orientation should be toward the nerve (so that the needle will pass the nerve rather than 
puncture it).

• When navigating the block needle between two nerves, the bevel should be rotated to face the 
closer of the two. This helps the block needle shoot the intervening gap and makes the closer 
nerve roll to the side as the needle is advanced. The same bevel orientation strategy can be 
used when placing the block needle between a nerve and an artery.
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FIGURE 11.1 Influence of angle of insonation on needle tip visibility. When the needle is nearly parallel, the tip is 
easily identified (A). When the needle is at an angle, needle tip visibility is difficult (B). Echogenic needles 
can help improve needle tip visibility at steep angles under some clinical imaging conditions (C and D). 
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FIGURE 11.2 Influence of bevel orientation on needle tip visibility: bevel up (A) and bevel  
down (B). 
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FIGURE 11.3 Photomicrographs of needles used for regional block. A plain conventional needle (A) and echogenic 
designs (B, C, and D) are shown. A smooth needle may not generate a recordable echo because its 
rounded shaft reflects most incident sound away from the source. A variety of textured surfaces are 
manufactured and marketed to improve needle tip detection on acquired sonograms. 
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OFFLINE MARKINGS

Offline techniques involve external skin markings from ultrasound scans without imaging during 
needle placement.1 Changes in patient position, mobility of the skin, and dynamic changes with 
needle placement and injection limit the utility of this approach, but this approach can be used 
for neuraxial blocks. The skin adjacent to the sides of the transducer can be marked. Alternatively, 
a paper clip or solid metal stylet (preferably with dull ends) can be used to create artifact within 
the field to mark the position of the object. For this technique, spatial compound imaging can 
be turned off to enhance the artifact.2 The M-mode center line can be used to facilitate offline 
markings in the center of the field.

ONLINE GUIDANCE

There are two basic approaches to online ultrasound guidance (imaging during the intervention). 
With the out-of-plane technique, the needle tip crosses the plane of imaging as an echogenic dot. 
With the in-plane approach, the entire tip and shaft of the advancing needle are visible.

OUT-OF-PLANE APPROACH

There are several advantages to the out-of-plane approach to regional block (Table 12.1). This 
approach is most similar to traditional approaches to regional block guided by nerve stimulation 
or palpation. Therefore the out-of-plane approach provides a natural transition from one form 
of guidance to another. The out-of-plane approach uses a shorter needle path than do in-plane 
approaches. If short-axis views of the nerve are used, an out-of-plane approach results in catheter 
placement that is guided along the path of the nerve. One disadvantage of the out-of-plane 

See Video 1.1 on ExpertConsult.com.

TABLE 12.1 Comparison of Out-of-Plane and In-Plane Approaches

Approach Advantages Disadvantages
Out-of-plane 
(OOP)

Most similar to other 
approaches to regional block 
(nerve stimulation or palpation)

Unimaged needle path, crossing the plane of 
imaging without recognition

Shorter needle path than with 
in-plane approaches

Along the nerve path (catheters)

In-plane (IP) Most direct visualization Partial line-ups (creating a false sense of security 
when the needle tip is not correctly identified)

Some unimaged needle path occurs with IP 
approach, but typically less than with OOP 
approach

Longer paths and therefore more structures to 
cross with the block needle

http://expertconsult.com/
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approach is the extent of the unimaged needle path (structures that may lie short of or beyond 
the scan plane). If the needle tip crosses the scan plane without recognition, it can be advanced 
beyond the scan plane into undesired tissue.

IN-PLANE APPROACH

There are several advantages to the in-plane approach. It provides the most direct visualization 
of the needle tip and injection. The amount of unimaged needle path is typically small. The needle 
tip is visualized before advancement. One disadvantage is the long needle path, which results in 
more tissue for the needle to cross. Large-bore needles are often used with this approach to 
facilitate alignment. Partial line-ups (visualization of the needle shaft without visualization of the 
needle tip in the scan plane) create a false sense of security and therefore compromise safety of 
the technique.

External marks on the transducer can be used to initially guide needle placement for in-plane 
technique. However, the mechanical axis of the transducer and its acoustic axis are not always 
precisely aligned.3 The traditional teaching is that watching your hands during ultrasound-guided 
regional anesthesia is a quality-compromising behavior. However, recent evidence suggests that 
initial visual guidance can improve the speed of subsequent sonographic guidance for regional 
anesthesia interventions.4 Furthermore, in-plane lineups of novices are typically better when the 
visual axis and needle path are aligned.5

NEEDLE REDIRECTION DURING IN-PLANE TECHNIQUE

The traditional teaching is that it is difficult to redirect the needle after it is placed within muscle 
and that it is necessary to pull it back to the subcutaneous tissue to effectively change the needle 
trajectory. However, there are some maneuvers that will influence the needle path when the needle 
is deep within soft tissue. Rotating the needle will change the bevel orientation and have a small 
effect on the trajectory. Quincke tip needles deflect away from the bevel surface.6,7 Controlling 
the amount of transducer compression can alter the needle path, with more compression forcing 
a slightly steeper approach.8 In some cases, injecting fluid can create a more favorable needle path 
if unintended (and displaceable) targets lie in the path.

Hand-on-needle hub provides better needle control for in-plane technique. This is important 
for blocks above the clavicle where the injection hand is stabilized. Hand-on-syringe provides 
the ability to control needle movement and injection by a single operator.

Skill is more important than approach alone. There will probably never be a good study comparing 
the two approaches (out-of-plane versus in-plane) because of strong institutional biases and effort 
dependence regarding how to perform regional blocks.

By musculoskeletal convention, the long-axis images are shown with the proximal side on the 
left and the distal side on the right. Long-axis views are useful for demonstrating longitudinal 
distribution of local anesthetic along the nerve path in one image. However, in clinical practice, 
it is usually easier to view the nerve in short axis and slide along the nerve path in a proximal-distal 
fashion to assess the longitudinal distribution.
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FIGURE 12.1 Schematic drawing of the short-axis (SAX) and long-axis (LAX) out-of-plane 
(OOP) imaging (left panels), and SAX and LAX in-plane (IP) imaging (right panels). 
(Adapted from Gray AT. Ultrasound-guided regional anesthesia: current state 
of the art. Anesthesiology. 2006;104:368–373.)

FIGURE 12.2 Setup for regional block with hand-on-syringe or hand-on-needle approaches. 
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FIGURE 12.3 Median nerve viewed in short axis (A and B) and in long axis (C and D). 
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Sonographic Signs of 
Successful Injections

CHAPTER 

13 

It seems simple enough to state that successful drug injections for regional blockade should 
surround the peripheral nerve. However, studies have reported that the doughnut sign, previously 
considered the gold standard for success, has a positive predictive value of only 90% for producing 
surgical anesthesia.1 It is therefore important to carefully consider multiple factors that constitute 
sonographic signs for success that can be evaluated after injection.

First, successful drug injections should clarify the nerve border. Most regional blocks are 
performed with nerves viewed in short axis to evaluate the circumferential distribution. If more 
than half of the nerve border is contacted by local anesthetic, it is unlikely there is an intervening 
fascial plane that will serve as a barrier to diffusion. Therefore it is important that the injection 
round the corner of the nerve so that there is demonstrated curvature of the injection.

Second, successful drug injections will track along the nerve. Although the longitudinal distribu-
tion can be imaged with the nerve viewed in long axis, it is usually easier to slide the transducer 
along the nerve path with the nerve viewed in short axis (short-axis sliding assessment). If the 
local anesthetic truly tracks along the nerve, it will track along nerve divisions as well. This sign 
is especially useful for femoral and popliteal blocks because these block procedures are performed 
near points of nerve branching.

Third, peripheral nerves are often connected to adjacent structures, such as arteries or other 
peripheral nerves. Because they are covered in common connective tissue, successful injections 
should separate the connected structures. This is why practitioners often perform infraclavicular 
blocks or axillary blocks by placing the block needle tip between the axillary artery and the 
adjacent nerves. Understanding these connective tissue layers can provide a means of keeping 
the needle tip at a distance from the peripheral nerves.

Fourth, peripheral nerves are often more echogenic after injection of local anesthetic. This is 
because anechoic fluid has been injected into an attenuating sound field. This is not a perfect 
sign of success because anechoic fluid introduced anywhere between the nerve and the skin 
surface can cause this same effect.
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See Video 1.1 on ExpertConsult.com.
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FIGURE 13.1 Image sequence showing successful sciatic nerve block in the popliteal fossa. The tibial and common 
peroneal contributions of the sciatic nerve are viewed in short axis before injection (A). An in-plane 
approach is demonstrated where the needle tip is placed between the tibial and common peroneal 
nerves (B). Local anesthetic is injected between the nerves (C). After injection, local anesthetic is distributed 
around the nerves (D) and tracks along nerve branches (E). A long-axis view also verifies the local 
anesthetic distribution along the sciatic nerve (F). 



34

Ultrasound-Guided 
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Nerve Blocks
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INTRODUCTION

Ultrasound-guided continuous peripheral nerve blocks can be placed with high success rates and 
low complication profiles in both adults and children.1,2 Peripheral nerve catheters are more 
beneficial than traditional opioid-based analgesia and also are associated with improved pain 
control, lower opioid requirements, less nausea, and greater patient satisfaction when compared 
with single-shot blocks.3–5 Catheters are commonly placed at the interscalene, supraclavicular, 
infraclavicular, sciatic, femoral, adductor canal, and popliteal sites. A short-axis in-plane approach 
to peripheral nerve catheter insertion is popular, although out-of-plane techniques and long-axis 
approaches also have been described.6

SUGGESTED TECHNIQUE

When placing peripheral nerve catheters, many practitioners use the same short-axis in-plane 
approach that is commonly used for single-shot blocks.7 The clinician must demonstrate proper 
hand hygiene and maintain sterile technique throughout the entire procedure.

After ultrasound imaging of the needle tip in close relation to the nerve has been obtained, 
the proceduralist typically injects 10 to 20 mL of local anesthetic or saline to create space into 
which the catheter can be advanced. The catheter is threaded through and then beyond the needle 
tip, leaving the catheter either alongside or around the peripheral nerve. Catheter advancement 
is usually accomplished without ultrasound guidance, although advances in ultrasound needle 
guidance systems can allow for catheter advancement with real-time ultrasound assistance.8

The needle is now withdrawn over the catheter. The catheter is then viewed using ultrasound, 
and tip placement can be confirmed by injecting 1 mL of air through the catheter.9 Based on 
ultrasound interrogation, the catheter may be slightly withdrawn to an optimal location in close 
proximity to the nerve. Additional local anesthetic may now be given through the catheter. The 
catheter is then secured with a skin adhesive followed by transparent sterile dressing 
placement.10

A long-axis in-plane approach to continuous peripheral nerve blocks has been described.11 In 
this approach, the peripheral nerve, needle shaft, and catheter tubing can all be viewed in the 
same ultrasound image. However, it can be difficult to manipulate the transducer to maintain all 
three structures within the plane of imaging. One study found that the onset of sensory anesthesia 
was faster only to be negated by a slower procedure time when using a long-axis in-plane approach 
to femoral nerve catheter placement.6 No other advantages were described, and the complication 
profile was similar to catheters placed with the short-axis in-plane technique. Subgluteal sciatic 
nerve catheters seem particularly amenable to the long-axis in-plane approach when the patient 
is placed in the prone position.

DISCUSSION

Placing peripheral nerve catheters with ultrasound guidance alone is faster, causes less procedure-
related pain, is more cost effective, and provides equivalent anesthesia when compared with 

See Video 1.1 and Video 14.1 on ExpertConsult.com.
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catheters placed with stimulating needles and stimulating catheters both with and without ultrasound 
guidance.12–15 When injecting local anesthetic, similar times to sensory and motor anesthesia can 
be achieved by injecting through the needle or the catheter.16,17 Catheter-insertion distance past 
the needle does not appear to affect the quality of analgesia, and many practitioners aim to thread 
the catheter 1 to 5 cm beyond the needle tip.18

A relatively new method for placing peripheral nerve catheters is known as the catheter-over-
needle (CON) technique. As its name suggests, the catheter is already loaded onto the block 
needle, and once the needle/catheter unit is in proper location adjacent to the nerve, the practitioner 
removes the needle as the catheter remains in place. As compared with the catheter-through-needle 
(CTN) technique, the CON approach may cause less fluid leakage at the skin insertion site and 
less catheter dislodgement. Further studies are in progress to evaluate these and other potential 
differences between the techniques.

Catheter orifice configuration may influence the quality of nerve blockade, with multiorifice 
catheters providing superior analgesia when compared with end-hole catheters.19 Finally, complica-
tions related to continuous peripheral nerve blocks, such as bleeding, infection, neurologic injury, 
and local anesthetic toxicity, have been studied and remain relatively low.1,20

Clinical Pearls

• A successful peripheral nerve catheter program requires trust and collaboration between the 
anesthesia team and clinicians from other medical and surgical specialties.

• Customized peripheral nerve catheter kits that bundle high-quality and validated supplies may 
allow for greater efficiency and better results.

• In the short-axis in-plane approach to continuous peripheral nerve blocks, rotating the bevel of 
the needle 90 degrees may allow the catheter to be positioned alongside the nerve rather than 
above or below it. A styletted catheter is often easier to advance past the needle and into the 
tissue adjacent to the nerve. After injecting local anesthetic or saline through the block needle, 
withdrawing the needle slightly may allow the catheter to thread with more ease.

• Careful attention to ergonomics can lead to less fatigue and more success when placing 
peripheral nerve catheters. Keep the ultrasound screen at eye level directly across from where 
the block is being placed. Hold the ultrasound probe near its end, with the hand braced against 
the patient’s skin. Be conscious of bed and procedure table height. Posture is particularly 
important, and sitting may aid placement of some continuous blocks, especially popliteal 
catheters.

• Dilute solutions of local anesthetics can be safely administered through peripheral nerve 
catheters using commercially available delivery systems both in the hospital and at home. 
Patient education including succinct written instructions must be provided to patients who will 
be managing and removing their catheters at home.4
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A B

FIGURE 14.2 External photographs showing the approach to popliteal catheter placement. The proceduralist shown 
connects a 20-mL syringe directly to the Tuohy needle and advances into the popliteal fossa with 
ultrasound guidance (A). The catheter is then threaded into and past the Tuohy needle (B). Catheter 
placement is confirmed by sonographic assessment. 

FIGURE 14.1 The equipment necessary for ultrasound-guided peripheral nerve catheter 
placement. 
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FIGURE 14.3 Ultrasound imaging of a peripheral nerve catheter in the popliteal fossa. The catheter is placed below 
(A), between (B), or above (C) the common peroneal and tibial branches of the sciatic nerve. All catheters 
were functional. 
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FIGURE 14.4 Sonographic assessment of a peripheral nerve catheter in the adductor canal. The space is dilated 
with an injection of local anesthetic or saline through the needle (A). The catheter is then advanced 
and typically tracks adjacent to (B and C) or above (D) the femoral artery. 
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FIGURE 14.5 Advancement of a peripheral nerve catheter for continuous femoral nerve block. 
Note the triangular appearance of the femoral nerve and the catheter tracking 
below it. 
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FIGURE 14.6 Ultrasound imaging of a peripheral nerve catheter in the interscalene groove (A and B). If the catheter 
is placed within the groove, it does not matter on which side of the brachial plexus the catheter is 
positioned for adequate nerve blockade to occur. 
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FIGURE 14.7 Image sequence showing continuous supraclavicular nerve block. The needle tip is advanced toward 
the subclavian artery. Local anesthetic or saline is then injected in close proximity to the divisions of 
the brachial plexus (A), creating a space for threading the peripheral nerve catheter (B). 
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FIGURE 14.8 Sonogram showing an air test to confirm catheter placement for continuous 
supraclavicular nerve block. Ultrasound imaging of the peripheral nerve catheter 
often proves difficult to obtain. Injecting 0.5 to 1 mL of air through the catheter 
can help identify catheter tip location. 
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