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Preface

Echocardiography has become an integral and essential part of daily 
practice in the critical care setting. The rapid and immediate appli-
cation of this invaluable tool must be matched by an appropriate set 
of operator skills and knowledge. The critical care physician, piv-
otal to this enhancement in patient management, must learn a broad 
range of techniques and knowledge when moving beyond the basic 
level of echocardiography to the more advanced level. This book is 
dedicated to assisting critical care physician in this challenging and 
rewarding pursuit.

To provide guidance in how to optimize the use of echocardiog-
raphy in the evaluation of cardiac function and haemodynamics 
in the critically ill patient, contributions from international   
experts have been brought together in this book. The book is 
divided into four parts. Part I (General Principles) provides the 
building blocks for advanced critical care echocardiography. 
Doppler principles, artefacts, and pitfalls, haemodynamic, 
and cardiopulmonary principles are covered. Part II (Echo 
Assessments) contains 12 chapters; each describes the techniques 
and assessment methods used in specific clinical topics. Part III 
(Integrative Approach) marks the full applications of critical care 

echocardiography in different but common scenarios. The con-
tents range from those commonly encountered situations to the 
unexpected and unusual. Echocardiography is a very live tech-
nology and has been evolving in the last 30 years. Covering only 
the conventional techniques without describing the latest would 
be a major omission in an advanced echocardiography book. Part 
IV (Future Developments) therefore covers the latest techniques 
that are available at present.

We are indebted to all colleagues in the field who have been 
working humbly and silently in the background giving life to critical 
care echocardiography, and to those who contributed to this book 
in many ways. We have attempted to be as accurate and up to date 
as possible, but we recognize that any work of this scale may contain 
mistakes, omissions, and outdated information. We will be grateful 
if you can bring such items to our attention.

We hope that this book provides a valuable resource to teachers, 
students, researchers, and practitioners of critical care echocardi-
ography. Clinicians undertaking this journey into more advanced 
echocardiographic techniques will find it an enthralling and lifelong 
endeavour.
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Basic Doppler principles
Stephen Huang

Introduction

The International Expert Round Table on Ultrasound in ICU report 
recommends two levels of critical care echocardiography creden-
tials:  Level 1 (basic) and Level 2 (advanced). Level 1 critical care 
echocardiography training only requires trainees to be competent 
in two- dimensional (2D) echocardiography measurements and in-
terpretations (see Chapter 29) whereas Level 2 credential requires, 
among other things, haemodynamic assessments by Doppler 
echocardiography [1] .

The usefulness of Doppler echocardiography can be appreciated 
from examining the Doppler spectrum in Figure 1.1, which illus-
trates typical mitral inflow and regurgitation blood velocity vs. time 
relationship. It can be seen that the two Doppler spectra differ in the 
following aspects:

 • shape
 • velocity
 • direction: positive vs. negative
 • timing and duration

Physiologically, the differences observed in the aforementioned 
parameters can be explained by the instantaneous changes in pres-
sure gradient between the two chambers, in this case the left ven-
tricle and the left atrium. The pressure gradient between the two 
chambers can in turn be accounted for by one or more of the fol-
lowing determinants:

 • cardiac function
 • cardiac rhythm
 • preload and afterload
 • valvular diseases
 • heart– lung interactions

Therefore, by examining and comparing the Doppler spectrum, one 
would be able to deduce some of this information and draw infer-
ence about the cardiac function and haemodynamic status (Fig. 1.2).

This chapter begins by revising ultrasound properties and Doppler 
physics that are important for the understanding the Doppler spec-
trum. Important concepts such as Doppler intensity and modal 
velocity will be discussed. Finally, the principles and applications 

of various Doppler modalities, including tissue Doppler, will be 
presented.

Wave properties revisited

Sound wave

Sound wave is mechanical vibrations of the particles in a medium. 
The particles only vibrate (oscillate) about an equilibrium (or mean) 
position, and does not involve permanent displacement of particles 
(Video 1.1 ). The vibration transfers mechanical energy from one 
point to another.

In medical ultrasound, the piezoelectric crystals on the surface 
of transducer act as the sound sources (vibrator). In response to a 
change in electrical voltage, the piezoelectric crystals vibrate in the 
MHz range, hence producing ultrasound. Like all sound waves, 
ultrasound is a longitudinal wave and, as the particles vibrate, alter-
nate regions of high and low pressures, known as compressions and 
rarefactions, respectively, are created (Fig. 1.3A). The distance of the 
particles from their equilibrium positions against time can be de-
picted as a sinusoidal wave (Fig. 1.3 and Video 1.1 ).

Sound wave properties

All waves are characterized by three properties:

 • Frequency (f) is the number of vibrations (cycles) per second and
the unit of measurement is Hertz (Hz). Diagnostic ultrasound fre-
quency is typical in the range from 2 to 20 MHz. The reciprocal of 
frequency (1/ f) is the period, which is the time taken to complete
one cycle.

 • Wavelength (λ) is the length of one complete cycle and is measured 
in metres.

 • Amplitude (A) is the magnitude of the wave and is proportional to
the number of particles displaced by the vibration (Fig. 1.3). More
energy causes more particles to vibrate. Amplitude is perceived as
loudness in sound. In medical ultrasound, it is depicted as bright-
ness (or gain) on the display. The amplitude reduces as ultrasound 
travels through biological tissues because energy is dissipated in
overcoming the viscosity of the tissue, and also through scat-
tering and multiple reflections. This loss of amplitude (energy)
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with distance travelled is known as attenuation, a phenomenon 
where the amplitude decreases with depth. Sonographers often 
use the term ‘amplitude’ and ‘intensity’ (I)  interchangeably. 
Although there are differences between the two, we only need to 
know intensity (I)  is proportional to the square of amplitude (I 
∝ A2) and they both refer to the strength of the echo signal in 
everyday language.

relationship between frequency, wavelength, 
and velocity

Velocity (c) is distance the sound wave travels in one second, and is 
equal to the product of wavelength and frequency:

c f= λ .  Eqt.1

Ultrasound, regardless of frequency, travels at the same velocity 
in the same tissue (same tissue density). The velocity changes only 
when it is travelling in a tissue with different density (e.g. bone vs. 
muscle), and this is due to the change in wavelength. On the other 
hand, the frequency remains constant.

reflection versus penetration

Reflections of ultrasound, commonly known as echo, occur where 
there are changes in tissue acoustic impedance (Z), that is, imped-
ance mismatch (Table 1.2). As Z is proportional to tissue density (ρ), 
reflections occur at tissue interfaces (boundaries) where there are 
differences in ρ.

The percentage of ultrasound reflected (R%) when travelling from 
tissue 1 to tissue 2 is given by:

R
Z Z
Z Z

% %,=
+







×2 1

2 1

2

100
−

 Eqt.2

where Z1 and Z2 are the acoustic impedances for two adjacent tissues 
with densities ρ1 and ρ2, respectively. Note that the R% only depends 
on the difference of Zs between the two tissues and not on the direc-
tion of ultrasound. The percentage of ultrasound left for penetration 
is (1 –  R%).

Doppler principles

While the frequency of ultrasound is not affected by tissue density, 
it changes when there is a relative motion between the transducer 
and the reflector. Since the transducer is mostly stationary when ac-
quiring an image, any change in frequency is assumed to be due to 
moving reflectors in the body. Common moving reflectors in echo-
cardiography are blood cells, heart valves, and myocardium.

Doppler effect and Doppler shift

When a point sound source vibrates, it emits a series of concentric 
spherical waves outward. In a two- dimensional plane, this is much 
like the ripples caused by dropping a stone in a pond (Fig. 1.4). The 
line joining the particles of the same phase is known as the wave-
front. The speed of the wavefront travelling away from the sound 
source is the velocity of the wave, and is constant in that medium.

The frequency of a moving sound source may appear higher or 
lower, due to the ‘compression’ and ‘spreading out’ of the waveform, 
depending on the position of the observer (Fig. 1.5). Similarly, a re-
flector moving towards a stationary sound source compresses the 
waveform resulting in higher frequency; whereas a reflector moving 
away from the sound source results in lower frequency due to 
‘stretching’ of the wavelength (Fig. 1.6).

Doppler frequency (fD) or Doppler shift (also known as beat fre-
quency), refers to the shift in frequency due to the moving red blood 
cells (RBCs), and is calculated from:

f f fD e t= − ,  Eqt.3

where fD is the Doppler frequency (shift), ft is the original trans-
mitted frequency, and fe is the echo frequency (Fig. 1.7).

Mitral inflow

Difference in:
• Shape
• Velocity
• Direction
• Timing and duration

Mitral regurgitation

Fig. 1.1 Blood flows are characterized by blood patterns: here are 
blood flow patterns (also known as Doppler spectra) showing the inflow 
and regurgitant flows of the mitral valve. Note the differences in shape, 
velocity, direction of flows (positive and negative), timing, and duration.

Cardiac rhythm

Cardiac
function

Heart-lung
interaction

Afterload

Preload

Vascular
resistance Blood

volume

Valvular
diseases

Regurgitation Stenosis

Timing
&

duration

Direction

Medications

Systolic &
diastolic function

Fluid
management

Velocity

Shape

Pressure
gradient

Doppler
spectrum

Fig. 1.2 Determinants of Doppler spectrum. Doppler spectrum is 
governed by the temporal relationships of the pressure gradient between 
two chambers, which is determined by several major physiological 
variables including cardiac function, heart– lung interaction, preload 
and afterload, and valvular diseases. These physiological variables 
can be altered by other external factors such as medications and fluid 
administratons.
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the Doppler equation

Determination of blood flow velocity is an important element in 
Doppler echocardiography. Blood flow velocity (v) can be calculated 
using the Doppler equation:

f f f
f v
cD t

t= − =
⋅ ⋅

e
2

,  Eqt.4

by rearranging:

v
f c

f
D

t

=
⋅

⋅2
,  Eqt.5

where c is the average velocity of ultrasound in biological tissue and 
is taken as 1540 m/ s (Fig. 1.8A).

The Doppler equation assumes the ultrasound beam is parallel to 
the blood flow (Fig. 1.10A). If the angle (θ) between the ultrasound 
beam and the blood flow is greater than zero, the measured velocity 
(vʹ ) will be underestimated by a factor of cosθ (Fig. 1.8B). If v is the 
true flow velocity, then

′ = ⋅v v cosθ,  Eqt.6

where θ is known as the Doppler angle. Note that vʹ equals to 
v when θ  =  0°, and vʹ will be underestimated when θ is greater   
than 0°.

It is apparent that as θ increases, the error in measuring the 
velocity also increases (Fig. 1.8C). Ultrasound machines assume 
θ is zero, hence operators need to minimize θ as much as possible, 
so that v’ approximates v. For practical purpose, θ should be kept 
less than 20° where the measurement error is less than 10%.

Compression

A

B

Rarefaction

Amplitude

Amplitude

Wavelength (λ)

Equilibrium positions

Fig. 1.3 Longitudinal wave. Sound wave is a longitudinal wave where the particles vibrate longitudinally in the direction of wave propagation (refer 
text for explanation). As the particles vibrate about their equilibrium (mean) positions, they created alternate high and low pressure regions known 
as compression and rarefactions, respectively. The number of vibrating particles is proportional to the amplitude, and the amplitude determines the 
intensity (strength) of the ultrasound signal. (A) Large amplitude signal; (B) small amplitude signal.

table 1.1 Velocity of ultrasound in different tissues

Biological tissue or medium Velocity (m/ s)

Muscle 1580

Fat 1459

Kidney 1560

Liver 1550

Blood 1575

Lung 650

Bone 4080

Water 1480

Soft tissue (average) 1540
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the power and Doppler spectra

the power spectrum

In laminar flow, RBCs are travelling at a range of velocities in any 
cross- section of blood vessels at any instance, with the highest 

velocities found at the centre of the vessel and lowest at the per-
iphery next to the vessel wall (see next). These different velocities 
produce a range of echo frequencies (fe) that combine to give rise to 
a complex resultant waveform (Fig. 1.9). The ultrasound machine, 
after receiving the combined complex echo waveform, resolves it 
into its individual component waveform using a process called fast 
Fourier transformation, or spectral analysis. The echo frequencies 
from each of these individual components are used to calculate the 
corresponding Doppler frequencies, and converted to individual 
velocity using the Doppler equation. The distribution of velocities at 
any instance can then be plotted in a power spectrum (Fig. 1.9). The 
number of RBC in a Doppler signal determines the amplitude of 
the wave, which is related to the intensity of the signal (intensity ∝ 
amplitude2) (see earlier) (Fig. 1.10). The intensity is represented by 
the brightness or gain on the display. The modal velocity, the velocity 
at which most of the RBCs are travelling, is the velocity with the 
highest intensity (gain).

The Doppler spectrum

Blood flow is pulsatile in nature, and the velocities change con-
stantly with time. To examine the changes, blood flow informa-
tion is collected continuously and the power spectra are also 
being constructed continuously. A Doppler spectrum displaying 
the relationship between flow velocity (the vertical axis) versus 
time (the horizontal axis) are constructed by ‘stacking’ the power 
spectra obtained at different times (Fig 1.11). The intensity, 
which is proportional to the number of RBC, is shown qualita-
tively as the gain of the signal.

Wavefronts
λ

Sound
source

Fig. 1.4 Wave and wavefronts. A schematic diagram showing a two- 
dimensional representation of wavefronts of a three- dimensional ripple 
wave (sectioned). A wavefront is the line joining the points where the 
waves are of the same phase. In this example, the wavefronts represent 
the contours of the peak of the waves, and the distance between two 
successive wavefronts represent one wavelength (λ).

SS

‘Spreading out’ of waveform Compression of waveform

f0

fa ft

Fig. 1.5 Effects of a moving sound source on wavelengths and 
frequencies. Upper panel, a stationary sound source (SS) emits sound 
wave with fixed frequency (fo) in all directions. Lower panel, the SS 
moving towards the right compresses the wavefronts on the right side and 
increases the frequency (ft). On the other hand, the wavefronts on the left 
side ‘spread out’ as SS is moving away resulting in a lower frequency (fa).

table 1.2 Reflection vs. transmission. Examples: typical acoustic 
impedances

Medium or biological tissue Z (× 106 rayls)

Air 0.0004

Water 1.48

Soft tissue:
Muscle
Liver
Kidney
Fat

1.70
1.64
1.62
1.38

Blood 1.62

Bone 7.80

The percentage of ultrasound reflected (R%) is the same regardless of the direction of 
travel. In other words, R% from medium 1 to 2 is the same as from medium 2 to 1. The 
percentage of transmission can be calculated by (100%— R%),

Examples: percentage of reflection at some tissue interfaces

Interfaces Reflection (%) Transmission (%)

Air- muscle 99.91 0.09

Fat- muscle 1.08 98.92

Blood- muscle 0.06 99.94

Bone- muscle 90.9 9.1
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Doppler spectra for plug flow and parabolic flow

When blood is first ejected into the aorta, most of the RBCs are trav-
elling at high velocities giving rise to plug flow. In plug flow, the bulk 
of the RBC are moving within a narrow range of high velocities as if 
all the RBC across the vessel is moving along together as a solid plug 
(Fig. 1.12). This plug flow profile gradually develops into parabolic 
flow profile with distance because the layer of blood in touch with 
the vessel wall is slowed down due to friction at the blood– vessel 
boundary. This friction (or drag) passes on from the boundary layer 
inward into the ‘core’ (see Chapter 3 and Box 3.2). Eventually, the 
central core flows with the highest velocity, and the velocities de-
creases towards the boundary (periphery). This is known as para-
bolic flow (Fig. 1.12). As discussed earlier, plug flow is characterized 

by narrow spectra whereas parabolic flow gives rise to broad spectra 
(see Fig. 2.1, Chapter 2, for example of spectral broadening).

Pulsed- wave vs. continuous- wave Doppler

Pulsed- wave Doppler

In pulsed- wave Doppler, the transducer transmits short ultrasound 
pulses at regular intervals known as pulse repetition period (PRP), 
typically between 80 and 250 μsec. The pulse duration (PD) is the 
‘length’ of the pulse and is in the range of 1 to 2 μsec. In other words, 
for each cycle, the transducer spends less than 2% of the time for 
transmission. The pulse repetition frequency (PRF), defined as    
1/ PRP, is in the range of 4000 to 12 000 Hz. After transmitting the 
pulse, the transducer then acts as a receiver until the next pulse is 
sent. PRP is determined by the depth of the sample gate.

To find the blood flow velocities at a particular location, the oper-
ator places a sample gate (also known as range gate or sample volume) 
at that location. Using the depth of the sample gate, the ultrasound 
machine calculates the flight time (t), time taken for the pulse to 
travel to and back from the sample gate location, by

t 2d
c

= ,  Eqt.7

where d is the depth and c is the average ultrasound velocity in bio-
logical tissue. The total distance travelled by the pulse is 2d. The receiver 
function of the transducer is then activated briefly to receive the echo at 
time t after the pulse is transmitted. Since c is 1540 m/ s, therefore

t d=
0 077.

µsec.  Eqt.8

Ideally, the echo should have returned to the transducer before the 
next pulse is transmitted. In other words, t should be less than PRP. 
If d is too large, t may exceed the PRP and returns to the transducer 
after the second pulse is transmitted. In this case, the machine may 
misinterpret that the echo is from the second pulse instead of the 
one before, and erroneously assuming the echo is from a location 
much closer than the true location. Therefore, most machines set 

Reflector approaching sound sourceA B Reflector moving away from sound source

Sound
source

Sound
source

Fig. 1.6 Change in echo frequencies with moving reflectors. A, the transducer emits ultrasound wave of fixed frequency (fo) (blue wavefronts). 
Reflector (such as RBC) moving towards the transducer encounters and reflects the wavefronts earlier than a stationary reflector resulting in 
‘compression’ of echo wavefronts (red). Hence, the echo frequency (fe) appears higher than fo. B, when the reflector is moving away from the transducer, 
it takes longer for the transmitted wavefronts to reach the reflector. As a result, the reflected wave is ‘spread out’ and fe is lowered.

Echo freq
(fe = 36 Hz)

Transmitted freq
(ft = 30 Hz)

Doppler freq
(fD = 6 Hz)

Beats

1 second

Fig. 1.7 Doppler frequency. The difference between the echo frequency 
and the transmitted wave frequency (fe— ft) gives rise to the Doppler 
frequency (fD), also known as the beat frequency or Doppler shift. In this 
example, fe is 36 Hz and fo is 30 Hz. The Doppler frequency, number of 
beats per second, is therefore 36– 30 = 6 Hz.
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a maximum d where t is equal to PRP, and display multiple sample 
gates if t exceeds PRP.

The size of the sample gate is typically set between 2 and 5 mm but 
can be adjusted by the operator. A small sample gate size improves 
range specificity (location certainty) and is preferable. However, if 

the signal (gain) is weak, then a larger sample gate can be used but 
this diminishes the range specificity.

The echoes returning from the same location are received and 
stored for several cycles. Each echo pulse is resolved into individual 
frequencies by spectral analysis (see previous section and Fig. 1.9). 
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Fig. 1.8 Doppler equation and effects of Doppler angle. (A) The Doppler equation (inset) is valid only when the ultrasound beam is parallel to 
the blood flow (i.e. Doppler angle θ = 0 degrees). (B) If the Doppler angle θ is greater than zero to the flow, the true blood flow velocity (v) is now 
underestimated as v’. c is the average speed of ultrasound in biological tissue (=1540 m/ s); ft, fe, and fD are the transmitted wave, echo, and Doppler 
frequencies, respectively. (C) The percentage error in estimating blood flow velocity increases curvilinearly with Doppler angle.
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Fig. 1.9 The Doppler power spectrum. At any particular instance, echoes from all RBCs (travelling at different velocities) combine and give rise to 
complex resultant waveform. This complex waveform is resolved into its individual component frequencies (fe) using fast Fourier transformation 
(FFT). A power spectrum showing the distribution of velocities is plotted after converting each frequency to velocity using the Doppler equation. The 
intensity of each frequency (or velocity) is proportional to the amplitude of the fe which in turn is decided by the number of RBCs travelling at that 
corresponding velocity.
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These frequencies are converted to Doppler frequencies and finally 
to the corresponding velocities using the Doppler equation. Power 
spectrum is constructed using the velocities and the amplitude in-
formation (Fig. 1.13, see also Fig. 1.12). Combining power spectra 
obtained consecutively gives rise to the Doppler spectrum (Fig. 1.11).

Aliasing in PW Doppler

A minimum of two pulses per beat are required to correctly define 
the fD, hence flow velocity. This is achieved by using a high sampling 
rate (i.e. PRF). In other words, the maximal fD, hence maximal blood 
flow velocity (vmax), can be detected is:

Maximal PRFfD =
2

.  Eqt.9

The aforementioned relationship is known as the Nyquist limit, 
which states that the fD should not exceed half the sampling fre-
quency (i.e. PRF) or the PRF should be more than twice the fD.

When the sampling rate is less than two pulses per beat (long 
PRP), the Doppler frequency, fD, will be underestimated resulting in 
a lower velocity (Fig. 1.14). Underestimation of fD is usually accom-
panied by a phase shift (ϕ) (Fig. 1.14B). The ultrasound machine 
interprets this phase shift and displays the aliasing flow in the op-
posite flow direction resulting in a ‘wrap- around’ phenomenon (see 
also Fig. 2.6).

There are four general methods to correct for aliasing:

 1. Adjusting the baseline to devote the entire range of velocity range 
to the correct flow direction. This can double the vmax without 
aliasing.

More RBC

A

B

Stronger echo Larger amplitude

Smaller amplitudeWeaker echoLess RBC
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Modal velocity

Higher intensity

Lower intensity

Fig. 1.10 Amplitude and intensity of Doppler signal. The amplitude of the echo is proportional to the number of RBCs. This amplitude is translated 
into intensity by the ultrasound machine. Modal velocity is the velocity of most of the RBCs.
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Fig. 1.11 The Doppler spectrum. Doppler spectrum is not to be 
confused with power spectrum (Fig. 1.12). Doppler spectrum is a plot 
of velocity against time, and is constructed by combining power spectra 
from consecutive sampling (times). The y- axis (i.e. intensity) in the power 
spectrum is displayed as ‘gain’ (brightness) in the Doppler spectrum, and 
the x- axis (velocity) becomes the y- axis in the Doppler spectrum. The 
power spectrum in this example represents one obtained from plug flow, 
hence resulting in narrow Doppler spectrum. Parabolic flow gives rise to 
broad spectra (marked with *).
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Fig. 1.12 Power spectrum of parabolic flow and plug flow. As blood leaves the left ventricle and travels downstream, the flow profile changes from 
plug flow to parabolic flow due to viscosity (see Chapter 3). Parabolic flow is characterized by a uniform distribution of velocities, whereas plug flow is 
characterized by a skewed distribution with most RBCs travelling at higher velocities.
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 2. Provided that the PRF is not at its maximum, the PRF can be in-
creased by increasing the velocity scale.

 3. From Equations (5) and (9),

v
c

fmax = ⋅
⋅

PRF
4 o

.  Eqt.10

Hence, reducing the transducer frequency (fo) increases vmax 
(Box 1.1).

 4. PRF is inversely proportional to the depth (d) of the sample 
volume:

PRF
c

2d
= .  Eqt.11

Reducing the depth can therefore increase the PRF (Box 1.1). 
Unfortunately, reducing depth in the same acoustic window is 
often not possible as the PW Doppler measurements are lo-
cation specific. However, using other acoustic windows may 
help in reducing the depth (e.g. parasternal rather than apical 
windows).

Some machines offer a ‘high PRF’ option. However, a depth that 
is beyond what the PRP can cover results in two or more sampling 
volumes, hence two or more signals being interrogated. Positioning 

the extra sample gate at a location where no flow is present removes 
the ambiguity. Otherwise, continuous- wave Doppler should be de-
ployed (Fig. 2.6).

Continuous- wave Doppler

Continuous- wave (CW) Doppler splits the piezoelectric crystals on 
the transducer into two sets for data acquisition: (1) one set (usu-
ally 50%) of the crystals are used for ultrasound transmission; and 
(2) the other set for receiving echoes. Ultrasound transmission and 
reception are simultaneous and continuous in CW Doppler. The 
beat frequency is worked out as previously described (see Doppler 
principles and Fig. 1.7).

Range ambiguity

As CW Doppler receives echo signal continuously, one major problem 
is that all flow signals along the beam path will be received and interro-
gated giving rise to the issue of range ambiguity— the inability to resolve 
the specific location of flow signal when two or more flows are present, 
or the uncertainties in the actual location from which the Doppler sig-
nals occur. This gives rise to a masking effect, where a high velocity 
signal masks the low velocity signal. For example, if a low flow signal lies 
in the same beam path as a high flow signal, such as left ventricular out-
flow tract (LVOT) and stenotic aortic valve, the two signals overlap with 
the high velocity stenotic flow, thus masking the low velocity LVOT flow 
(Fig. 1.15). Masking is usually not an issue if only the highest velocity is 
the focus of the study because signals are not additive.

PRF > 2 pulses per beatA

B PRF < 2 pulses per beat

True beat

Phase shift φ

Aliasing beat Aliasing (‘wrap around’)

Fig. 1.14 Aliasing. The beat frequency, and hence velocity, can be correctly delineated if the sampling rate, the pulse repetition frequency (PRF), is 
greater than two per beat (A). The beat frequency will be underestimated if the PRF is less than two per beat resulting in aliasing (B). Phase shift is also 
present and is responsible for the ‘wrap- around’. In (B), instead of depicting the peak velocity as – 0.9 cm/ s, the peak velocity is presented as +0.5 cm/ s 
which is of lower magnitude and opposite sign.
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Aliasing in CW Doppler

Aliasing is not observed in CW Doppler because Doppler pulses are 
not used and therefore the issue of the Nyquist limit does not exist.

applications of PW and CW Doppler

PW and CW Doppler complement each other in echocardiography 
applications:

 • PW Doppler: The main advantage of PW Doppler is that the oper-
ator can choose the location where the velocity is to be measured— 
only the echoes returning to that location are being interrogated. 
However, PW Doppler cannot be used to measure high velocity 
flow because there is a limit on vmax imposed by PRF.

 • CW Doppler: This is ideal for measuring high velocity flows, such 
as regurgitations, stenoses, and shunts. The inability to resolve the 
location of flow signals is the main disadvantage of CW Doppler. 
However, this is usually not a concern as the flow with the highest 
velocity masks other flows with lower velocities.

Colour- flow Doppler (CFD)

Colour- flow Doppler provides real- time visualization of blood flow 
on the display. A detailed description of CFD instrumentation is be-
yond the scope of this book. Briefly, when CFD function is activated, 
the ultrasound machine places a ‘CFD window’ (or CFD box) with 
multiple PW Doppler gates over the 2D images. The echoes from 
these gates are interrogated using PW Doppler and the mean veloci-
ties of blood flow from each of these gates are displayed on the screen 
using a colour that matches the colour- flow map (Fig. 1.16) [2,3]. 
As a result, blood flow information is displayed along with the 2D 

Box 1.1 Maximal velocity in PW Doppler

Calculate the maximal velocity that can be measured if the PRF is 
12 000 Hz and the frequency of the transducer (fo) is 3 MHz (assuming 
c = 1540 m/ s).

The maximal velocity (vmax) is given by:

v
PRF c

fmax =
⋅

⋅
4

,
o

by substitution:

v ms msmax =
12000 1540

4 3 10
1.5 .

6

1 1⋅
×

≈
⋅

− −

Calculate the maximal velocity that can be measured if the depth (d)  is 
10 cm (0.1 m) and the frequency of the transducer (fo) is 3.5 MHz (assuming 
c = 1540 m/ s).

The PRP is given by PRP
d

c
=

2
,

⋅
 therefore PRF

2
=

c

d⋅
.

Substituting PRF in the first equation:

v
PRF c

f

c

d fmax

o o

=
⋅

⋅
=

⋅ ⋅4 8

2

v msmax =
⋅ ⋅

−1540

8 0.1 3.5 10
0.85 .

2

6

1

×
≈

What if the frequency of the transducer (fo) is reduced to 2 MHz?

v msmax =
×

−1540

8 0.1 2 10
1.48 .

2

6

1

⋅ ⋅
≈

PW Doppler
at LVOT

CW Doppler
through LVOT & AV

Fig. 1.15 Range ambiguity and ‘masking’ in CW Doppler. CW Doppler cannot resolve the location of flow signal. All signals along the cursor will be 
picked up and interrogated resulting in masking of low velocity signals by high velocity signals.
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Fig. 1.16 Colour- flow Doppler. A colour- flow Doppler box contains numerous PW sample gates. The echoes of these sample gates are interrogated 
and the mean velocity for each sample gate calculated. The mean velocities are represented by the corresponding colours in a colour- flow map. The 
colour- flow is superimposed on a 2D image. vrc, the mean velocity for the sample gate in row r and column c.

image so that the direction, the mean velocity, and location of the 
flow can be appreciated.

Direction of blood flow

The direction of blood flow, with reference to the transducer pos-
ition, is represented by different hue (colour) in CFD. By convention, 
blood flow direction is displayed as ‘Blue Away, Red Towards’ the 
transducer (BART) (Fig. 1.17A). As the mean velocities are deter-
mined by the Doppler principle, the detection of the velocities will 
be subjected to the same Doppler angle limitation. Therefore, flows 
perpendicular (90°) to the transducer do not register any hue and 
appear black (Fig. 1.17B). However, some flows can still be regis-
tered at the two ends (away from the midline) by phased- array or 
curvilinear transducers because the beam directions are at an angle 
(less than 90°) with the flow (Fig. 1.17B).

area of colour

The area of a particular colour represents the number of sample 
gates with the same mean velocity. Hence, a larger area of the same 
colour implies a larger amount of blood flowing at that same mean 
velocity (Fig. 1.16). Of note, the area does not reflect flow velocity; 
only the colour correlates with velocity (see next).

Velocity of blood flow

In CFD, the intensity of the colour denotes blood flow velocity (cf. 
the intensity denotes number of RBC in CW and PW Doppler). Dark 
or deep shades usually represent low velocities whereas light shades 

represent high velocities (Fig. 1.18A). As motion of the myocardium 
can also be detected by CFD, a wall filter is also applied to eliminate 
the low range myocardial velocities.

In parabolic or plug flow, the range of mean velocities is rela-
tively narrow (and hence small variance), and the maximal mean 
velocity is usually within the Nyquist limit (or vmax) (Fig. 1.18A). 
However, in situations where turbulence is present or flow velocity 
is high, as in regurgitations and stenosis, the range of mean veloci-
ties is large (and hence large variance) and exceeds the Nyquist limit   
(Fig. 1.18B). As in PW Doppler, velocities that exceed the Nyquist 
limit appear as aliasing and ‘wrap- around’ the colour- flow map. 
When the latter occurs, the aliasing velocities will be depicted in the 
traditional 2- colour colour Doppler map as the opposite flow colour 
(blue or red), or as different colours such as green or yellow if vari-
ance Doppler map is used (Fig. 1.18B and Fig. 1.19). The boundary 
between two hues represents blood flowing at the aliasing velocity 
(vmax)— the isovelocity contour in colour- flow 2D images (Fig. 1.20). 
In the three- dimensional perspective, the boundary forms an isove-
locity shell (or surface area) and is used for calculation of effective 
regurgitant or stenotic orifice (Box 1.2). Shifting the baseline has 
the effect of increasing or decreasing the aliasing velocity, thereby 
moving the isovelocity shell towards or away from the transducer 
(Fig. 1.20).

Increasing the scale of the colour- flow map increases the PRF, 
hence vmax. In some machines, this also increases the wall filter, 
hence filtering out the slow- motion artefacts from myocardial and 
valve motions.
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